Examveda

At the interface between two linear dielectrics (with dielectric constants $${{\varepsilon _1}}$$ and $${{\varepsilon _2}}$$), the electric field lines bend, as shown in the figure. Assume that there are no free charges at the interface. The ratio $$\frac{{{\varepsilon _1}}}{{{\varepsilon _2}}}$$ is
Electromagnetic Theory mcq question image

A. $$\frac{{\tan {\theta _1}}}{{\tan {\theta _2}}}$$

B. $$\frac{{\cos {\theta _1}}}{{\cos {\theta _2}}}$$

C. $$\frac{{\sin {\theta _1}}}{{\sin {\theta _2}}}$$

D. $$\frac{{\cot {\theta _1}}}{{\cot {\theta _2}}}$$

Answer: Option A


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$