At the interface between two linear dielectrics (with dielectric constants $${{\varepsilon _1}}$$ and $${{\varepsilon _2}}$$), the electric field lines bend, as shown in the figure. Assume that there are no free charges at the interface. The ratio $$\frac{{{\varepsilon _1}}}{{{\varepsilon _2}}}$$ is

A. $$\frac{{\tan {\theta _1}}}{{\tan {\theta _2}}}$$
B. $$\frac{{\cos {\theta _1}}}{{\cos {\theta _2}}}$$
C. $$\frac{{\sin {\theta _1}}}{{\sin {\theta _2}}}$$
D. $$\frac{{\cot {\theta _1}}}{{\cot {\theta _2}}}$$
Answer: Option A
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$

Join The Discussion