$${{\bf{\hat A}}}$$ and $${{\bf{\hat B}}}$$ are two quantum mechanical operators. If $$\left[ {{\bf{\hat A}},\,{\bf{\hat B}}} \right]$$ stands for the commutator of $${{\bf{\hat A}}}$$ and $${{\bf{\hat B}}}$$ then $$\left[ {\left[ {{\bf{\hat A}},\,{\bf{\hat B}}} \right],\,\left[ {{\bf{\hat B}},\,{\bf{\hat A}}} \right]} \right]$$ is equal to
A. $${\bf{\hat A\hat B\hat A\hat B}} - {\bf{\hat B\hat A\hat B\hat A}}$$
B. $${\bf{\hat A}}\left( {{\bf{\hat A\hat B}} - {\bf{\hat B\hat A}}} \right) - {\bf{\hat B}}\left( {{\bf{\hat B\hat A}} - {\bf{\hat A\hat B}}} \right)$$
C. zero
D. $${\left( {\left[ {{\bf{\hat A}},\,{\bf{\hat B}}} \right]} \right)^2}$$
Answer: Option C
Join The Discussion