Choose the correct option to fill? X so that the code given below implements the Heap sort.
#include <stdio.h>
void heapify(int arr[], int n, int i)
{
int largest = i; // Initialize largest as root
int l = 2*i + 1; // left = 2*i + 1
int r = 2*i + 2; // right = 2*i + 2
if (l < n && arr[l] > arr[largest])
largest = l;
if (r < n && arr[r] > arr[largest])
largest = r;
if (largest != i)
{
swap(arr[i], arr[largest]);
heapify(arr, n, largest);
}
}
void heapSort(int arr[], int n)
{
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
for (int i=n-1; i>=0; i--)
{
X;
heapify(arr, i, 0);
}
}
void printArray(int arr[], int n)
{
for (int i=0; i<n; ++i)
printf(“%d”,arr[i]);
printf(“\n”);
}
int main()
{
int arr[] = {12, 11, 13, 5, 6, 7};
int n = sizeof(arr)/sizeof(arr[0]);
heapSort(arr, n);
printf(“Sorted array is \n");
printArray(arr, n);
}
#include <stdio.h>
void heapify(int arr[], int n, int i)
{
int largest = i; // Initialize largest as root
int l = 2*i + 1; // left = 2*i + 1
int r = 2*i + 2; // right = 2*i + 2
if (l < n && arr[l] > arr[largest])
largest = l;
if (r < n && arr[r] > arr[largest])
largest = r;
if (largest != i)
{
swap(arr[i], arr[largest]);
heapify(arr, n, largest);
}
}
void heapSort(int arr[], int n)
{
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
for (int i=n-1; i>=0; i--)
{
X;
heapify(arr, i, 0);
}
}
void printArray(int arr[], int n)
{
for (int i=0; i<n; ++i)
printf(“%d”,arr[i]);
printf(“\n”);
}
int main()
{
int arr[] = {12, 11, 13, 5, 6, 7};
int n = sizeof(arr)/sizeof(arr[0]);
heapSort(arr, n);
printf(“Sorted array is \n");
printArray(arr, n);
}
A. swap(arr[0], arr[n])
B. swap(arr[i], arr[n])
C. swap(arr[0], arr[i])
D. swap(arr[i], arr[2*i])
Answer: Option C
Related Questions on Sorting Algorithms
What is the time complexity of Bubble Sort in the average case?
A. O(n log n)
B. O(n)
C. O(n2)
D. O(n3)
Which sorting algorithm is based on the divide-and-conquer strategy?
A. Insertion Sort
B. Quick Sort
C. Selection Sort
D. Insertion Sort
Which sorting algorithm uses a "pivot" element to partition the array into sub-arrays?
A. Merge Sort
B. Heap Sort
C. Counting Sort
D. Quick Sort
Join The Discussion