Complete the program.
n=rows[W]
D(0)=W
for k=1 to n
do for i=1 to n
do for j=1 to n
do ___________ return D(n)
n=rows[W]
D(0)=W
for k=1 to n
do for i=1 to n
do for j=1 to n
do ___________ return D(n)
A. dij(k)=min(dij(k-1), dik(k-1) - dkj(k-1))
B. dij(k)=max(dij(k-1), dik(k-1) - dkj(k-1))
C. dij(k)=min(dij(k-1), dik(k-1) + dkj(k-1))
D. dij(k)=max(dij(k-1), dik(k-1) + dkj(k-1))
Answer: Option C
Related Questions on Graph Algorithms (DFS, BFS, Dijkstras, etc)
A. Breadth-First Search (BFS)
B. Depth-First Search (DFS)
C. Bellman-Ford Algorithm
D. Dijkstra's Algorithm
What is the time complexity of Breadth-First Search (BFS) on a graph with V vertices and E edges?
A. O(V + E)
B. O(V2)
C. O(E log V)
D. O(V log V)
In Depth-First Search (DFS), what is the order of visiting nodes?
A. Level order
B. Inorder
C. Postorder
D. Preorder
Which algorithm can be used to detect negative weight cycles in a graph?
A. Dijkstra's Algorithm
B. Prim's Algorithm
C. Bellman-Ford Algorithm
D. Kruskal's Algorithm
Join The Discussion