Examveda
Examveda

Consider a system governed by the following equations:
$$\frac{{{\text{d}}{{\text{x}}_1}\left( {\text{t}} \right)}}{{{\text{dt}}}} = {{\text{x}}_2}\left( {\text{t}} \right) - {{\text{x}}_1}\left( {\text{t}} \right);\,\frac{{{\text{d}}{{\text{x}}_2}\left( {\text{t}} \right)}}{{{\text{dt}}}} = {{\text{x}}_1}\left( {\text{t}} \right) - {{\text{x}}_2}\left( {\text{t}} \right)$$
The initial conditions are such that $${{\text{x}}_1}\left( 0 \right) < {{\text{x}}_2}\left( 0 \right) < \infty .$$    Let $${{\text{x}}_{1{\text{f}}}} = \mathop {\lim }\limits_{{\text{t}} \to \infty } {{\text{x}}_1}\left( {\text{t}} \right)$$   and $${{\text{x}}_{2{\text{f}}}} = \mathop {\lim }\limits_{{\text{t}} \to \infty } {{\text{x}}_2}\left( {\text{t}} \right).$$   Which one of the following is true?

A. $${{\text{x}}_{1{\text{f}}}} < {{\text{x}}_{2{\text{f}}}} < \infty $$

B. $${{\text{x}}_{2{\text{f}}}} < {{\text{x}}_{1{\text{f}}}} < \infty $$

C. $${{\text{x}}_{1{\text{f}}}} = {{\text{x}}_{2{\text{f}}}} < \infty $$

D. $${{\text{x}}_{1{\text{f}}}} = {{\text{x}}_{2{\text{f}}}} = \infty $$

Answer: Option C


This Question Belongs to Engineering Maths >> Differential Equations

Join The Discussion

Related Questions on Differential Equations

The general solution of the differential equation, $$\frac{{{{\text{d}}^4}{\text{y}}}}{{{\text{d}}{{\text{x}}^4}}} - 2\frac{{{{\text{d}}^3}{\text{y}}}}{{{\text{d}}{{\text{x}}^3}}} + 2\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2\frac{{{\text{dy}}}}{{{\text{dx}}}} + {\text{y}} = 0$$       is

A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$