Consider a vector \[\overrightarrow {\bf{p}} = 2{\bf{\hat i}} + 3{\bf{\hat j}} + 2{\bf{\hat k}}\] in the coordinate system \[\left( {{\bf{\hat i}},\,{\bf{\hat j}},\,{\bf{\hat k}}} \right).\] The axes are rotated anti-clockwise about the Y-axis by an angle of 60°. The vector \[\overrightarrow p \] in the rotate coordinate system \[\left( {{\bf{\hat i}},\,{\bf{\hat j}},\,{\bf{\hat k}}} \right)\] is

A. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 + \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
B. \[\left( {1 + \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 - \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
C. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 + \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]
D. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 - \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]
Answer: Option A
Join The Discussion