Examveda

Consider an infinitely long straight cylindrical conductor of radius R with its axis along the Z-direction, which carries a current of 1A uniformly distributed over its cross-section. Which of the following statements is correct?
(where, r is the radial distance from the axis of the cylinder)

A. $$\overrightarrow \nabla \times \overrightarrow {\bf{B}} = 0\,\,\,\left( {{\text{everywhere}}} \right)$$

B. $$\overrightarrow \nabla \times \overrightarrow {\bf{B}} = \frac{{{\mu _0}}}{{\pi {R^2}}}{\bf{\hat z}}\,\,\,\left( {{\text{everywhere}}} \right)$$

C. $$\overrightarrow \nabla \times \overrightarrow {\bf{B}} = 0\,\,\,\left( {{\text{for }}r > R} \right)$$

D. $$\overrightarrow \nabla \times \overrightarrow {\bf{B}} = \frac{{{\mu _0}}}{{\pi {R^2}}}{\bf{\hat z}}\,\,\,\left( {{\text{for }}r > R} \right)$$

Answer: Option C


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$