Examveda

Consider the Bessel equation \[\left( {v = 0} \right),\,\frac{{{d^2}y}}{{d{z^2}}} + \frac{1}{z}\frac{{dy}}{{dz}} + y = 0.\]
Which one of the following statements is correct?

A. Equation has regular singular points at z = 0 and z = \[\infty \]

B. Equation has 2 linearly independent solutions that are entire

C. Equation has an' entire solution and a second linearly independent solution singular at z = 0

D. Limit z → \[\infty \] , taken along X-axis, exists for both the linearly independent solutions

Answer: Option A


This Question Belongs to Engineering Physics >> Mathematical Physics

Join The Discussion

Related Questions on Mathematical Physics

The contour integral $$\oint {\frac{{dz}}{{{z^2} + {a^2}}}} $$   is to be evaluated on a circle of radius 2a centred at the origin. It will have contributions only from the points

A. $$\frac{{1 + i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 + i}}{{\sqrt 2 }}a$$

B. $$ia{\text{ and }} - ia$$

C. $$ia,\, - ia,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$

D. $$\frac{{1 + i}}{{\sqrt 2 }}a,\, - \frac{{1 + i}}{{\sqrt 2 }}a,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$

Consider a vector \[\overrightarrow {\bf{p}} = 2{\bf{\hat i}} + 3{\bf{\hat j}} + 2{\bf{\hat k}}\]     in the coordinate system \[\left( {{\bf{\hat i}},\,{\bf{\hat j}},\,{\bf{\hat k}}} \right).\]   The axes are rotated anti-clockwise about the Y-axis by an angle of 60°. The vector \[\overrightarrow p \] in the rotate coordinate system \[\left( {{\bf{\hat i}},\,{\bf{\hat j}},\,{\bf{\hat k}}} \right)\]   is
Mathematical Physics mcq question image

A. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 + \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]

B. \[\left( {1 + \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 - \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]

C. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 + \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]

D. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 - \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]