Examveda

Consider the differential equation: $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \left( {1 + {{\text{y}}^2}} \right){\text{x}}{\text{.}}$$
The general solution with constant c is

A. $${\text{y}} = \tan \frac{{\text{x}}}{2} + \tan {\text{c}}$$

B. $${\text{y}} = {\tan ^2}\left( {\frac{{\text{x}}}{2} + {\text{c}}} \right)$$

C. $${\text{y}} = {\tan ^2}\left( {\frac{{\text{x}}}{2}} \right) + {\text{c}}$$

D. $${\text{y}} = \tan \left( {\frac{{{{\text{x}}^2}}}{2} + {\text{c}}} \right)$$

Answer: Option D


This Question Belongs to Engineering Maths >> Differential Equations

Join The Discussion

Related Questions on Differential Equations

The general solution of the differential equation, $$\frac{{{{\text{d}}^4}{\text{y}}}}{{{\text{d}}{{\text{x}}^4}}} - 2\frac{{{{\text{d}}^3}{\text{y}}}}{{{\text{d}}{{\text{x}}^3}}} + 2\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2\frac{{{\text{dy}}}}{{{\text{dx}}}} + {\text{y}} = 0$$       is

A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$