Consider the following difference equation
$${\text{x}}\left( {{\text{ydx}} + {\text{xdy}}} \right)\cos \frac{{\text{y}}}{{\text{x}}} = {\text{y}}\left( {{\text{xdy}} - {\text{ydx}}} \right)\sin \frac{{\text{y}}}{{\text{x}}}$$
Which of the following is the solution of the above equation (c is an arbitrary constant)?
A. $$\frac{{\text{x}}}{{\text{y}}}\cos \frac{{\text{y}}}{{\text{x}}} = {\text{c}}$$
B. $$\frac{{\text{x}}}{{\text{y}}}\sin \frac{{\text{y}}}{{\text{x}}} = {\text{c}}$$
C. $${\text{xy}}\cos \frac{{\text{y}}}{{\text{x}}} = {\text{c}}$$
D. $${\text{xy}}\sin \frac{{\text{y}}}{{\text{x}}} = {\text{c}}$$
Answer: Option C
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion