Examveda

Consider the following difference equation
$${\text{x}}\left( {{\text{ydx}} + {\text{xdy}}} \right)\cos \frac{{\text{y}}}{{\text{x}}} = {\text{y}}\left( {{\text{xdy}} - {\text{ydx}}} \right)\sin \frac{{\text{y}}}{{\text{x}}}$$
Which of the following is the solution of the above equation (c is an arbitrary constant)?

A. $$\frac{{\text{x}}}{{\text{y}}}\cos \frac{{\text{y}}}{{\text{x}}} = {\text{c}}$$

B. $$\frac{{\text{x}}}{{\text{y}}}\sin \frac{{\text{y}}}{{\text{x}}} = {\text{c}}$$

C. $${\text{xy}}\cos \frac{{\text{y}}}{{\text{x}}} = {\text{c}}$$

D. $${\text{xy}}\sin \frac{{\text{y}}}{{\text{x}}} = {\text{c}}$$

Answer: Option C


This Question Belongs to Engineering Maths >> Differential Equations

Join The Discussion

Related Questions on Differential Equations

The general solution of the differential equation, $$\frac{{{{\text{d}}^4}{\text{y}}}}{{{\text{d}}{{\text{x}}^4}}} - 2\frac{{{{\text{d}}^3}{\text{y}}}}{{{\text{d}}{{\text{x}}^3}}} + 2\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2\frac{{{\text{dy}}}}{{{\text{dx}}}} + {\text{y}} = 0$$       is

A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$