Consider the following three independent cases:
i. Particle A of charge +q moves in free space with a constant velocity $$\overrightarrow {\bf{v}} $$ (v ≪ speed of light).
ii. Particle B of charge +q moves in free space in a circle of radius R with same speed v as In case i.
iii. Particle C having charge -q moves as in case ii.
If the powers radiated by A, B and C are PA, PB and PC respectively then
A. PA = 0, PB > PC
B. PA = 0, PB = PC
C. PA > PB > PC
D. PA = PB = PC
Answer: Option B
Related Questions on Electromagnetic Theory
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion