31.
Which of these adjacency matrices represents a simple graph?

34.
If a connected Graph (G) contains n vertices what would be the rank of its incidence matrix?

35.
Given the following program, what will be the 3rd number that'd get printed in the output sequence for the given input?
#include <bits/stdc++.h> 
using namespace std; 
int cur=0; 
int G[10][10]; 
bool visited[10]; 
deque <int> q; 
 
void fun(int n); 
 
int main()
{   
	int num=0; 
	int n; 
	cin>>n; 
 
	for(int i=0;i<n;i++) 
      	for(int j=0;j<n;j++) 
        	cin>>G[i][j]; 
 
	for(int i=0;i<n;i++) 
        visited[i]=false; 
 
        fun(n); 
	return 0; 
} 
 
void fun(int n)
{ 
	cout<<cur<<" "; 
	visited[cur]=true; 
	q.push_back(cur); 
 
	do
        { 
		for(int j=0;j<n;j++)
                { 
		    if(G[cur][j]==1 && !visited[j])
                    { 
		        q.push_back(j); 
		        cout<<j<<" "; 
		        visited[j]=true; 
	            } 
 
                 } 
 
		q.pop_front(); 
		if(!q.empty()) 
		cur=q.front(); 
	 }while(!q.empty()); 
}
Input Sequence:-
9 
0 1 0 0 0 0 0 0 1    
1 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 1 
0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 1 0 
0 0 1 0 0 0 1 0 0 
0 0 0 0 0 1 0 1 1 
0 0 0 0 1 0 1 0 0 
1 0 1 0 0 0 1 0 0

39.
On which of the following statements does the time complexity of checking if an edge exists between two particular vertices is not, depends?

Read More Section(Graphs)

Each Section contains maximum 100 MCQs question on Graphs. To get more questions visit other sections.