11.
Compute the product matrix using Strassen's matrix multiplication algorithm.
Given a11=1; a12=3;a21=5;a22=7
b11=8;b12=4;b21=6;b22=2

14.
What will be the output of the following code in java?
import java.util.ArrayList;
public class LRU {	
    public static void main(String[] args) {
        int page_frame = 3;
        int page_ref_string[] = {1, 2, 4, 1, 0, 3, 2, 0, 5, 4};
	ArrayList<Integer> s=new ArrayList<>(page_frame);
	int count=0;
	int page_faults=0;
	for(int i:page_ref_string)
	{
	    if(!s.contains(i))
	    {
	    if(s.size()==page_frame)
	    {
	        s.remove(0);
		s.add(page_frame-1,i);
	    }
	    else
		s.add(count,i);
		page_faults++;
		++count;
	    }
	    else
	    {
		s.remove((Object)i);
		s.add(s.size(),i);		
	    }
	}
		System.out.println(page_faults);
    }
}

16.
Which of the following is made possible by the use of Polybius square?

19.
Consider the following iterative solution to find the sum of first n natural numbers:
#include<stdio.h>
int get_sum(int n)
{
      int sm = 0, i;
      for(i = 1; i <= n; i++)
        ________;
      return sm;
}
int main()
{
    int n = 10;
    int ans = get_sum(n);
    printf("%d",ans);
    return 0;
}
Which of the following lines completes the above code?