1.
The Laplace transform F(s) of the exponential function. f(t) = eat when t ≥ 0, where a is a constant and (s - a) > 0, is

3.
If the Laplace transform of $${{\text{e}}^{\omega {\text{t}}}}$$  is $$\frac{1}{{{\text{s}} - \omega }},$$  the Laplace transform of tcosh t is

4.
The function f(t) satisfies the differential equation $$\frac{{{{\text{d}}^2}{\text{f}}}}{{{\text{d}}{{\text{t}}^2}}} + {\text{f}} = 0$$   and the auxiliary conditions, f(0) = 0, $$\frac{{{\text{df}}}}{{{\text{dt}}}}\left( 0 \right) = 4.$$  The Laplace transform of f(t) is given by

5.
The Laplace transform of ei5t where $${\text{i}} = \sqrt { - 1} ,$$   is

6.
Laplace transform of the function sin ωt is

7.
For the function \[{\text{f}}\left( {\text{x}} \right) = \left\{ {\begin{array}{*{20}{c}} { - 2,}&{ - \pi < {\text{x}} < 0} \\ {2,}&{0 < {\text{x}} < \pi } \end{array}} \right.\]
The value of an in the Fourier series expansion of f(x) is

8.
Laplace transform of cos (ωt) is $$\frac{{\text{s}}}{{{{\text{s}}^2} + {\omega ^2}}}.$$  The Laplace transform of e-2t cos(4t) is

9.
The Laplace transform of sinh(at) is

10.
The Fourier cosine series for an even function f(x) is given by $${\text{f}}\left( {\text{x}} \right) = {{\text{a}}_0} + \sum\limits_{{\text{n}} = 1}^\infty {{{\text{a}}_{\text{n}}}\cos \left( {{\text{nx}}} \right)} $$
The value of the coefficient a2 for the function f(x) = cos2(x) in [0, π] is