Find the simplest value of $$2\sqrt {50} + \sqrt {18} - \sqrt {72} $$ (given √2 = 1.414).
A. 4.242
B. 9.898
C. 10.6312
D. 8.484
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & 2\sqrt {50} + \sqrt {18} - \sqrt {72} \cr & \Rightarrow 2 \times 5\sqrt 2 + 3\sqrt 2 - 6\sqrt 2 \cr & \Rightarrow 13\sqrt 2 - 6\sqrt 2 \cr & \Rightarrow 7\sqrt 2 \cr & \Rightarrow 7 \times 1.414 \cr & \Rightarrow 9.898 \cr} $$Related Questions on Surds and Indices
A. $$\frac{1}{2}$$
B. 1
C. 2
D. $$\frac{7}{2}$$
Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:
A. 1.45
B. 1.88
C. 2.9
D. 3.7

Join The Discussion