Examveda

For a vector potential $$\overrightarrow {\bf{A}} ,$$ the divergence of $$\overrightarrow {\bf{A}} $$ is $$\overrightarrow \nabla \cdot \overrightarrow {\bf{A}} = - \frac{{{\mu _0}}}{{4\pi }} \cdot \frac{Q}{{{r^2}}},$$    where Q is a constant of appropriate dimension. The corresponding scalar potential $$\phi \left( {r,\,t} \right)$$  that makes $$\overrightarrow {\bf{A}} $$ and $$\phi $$ Lorentz gauge invariant is

A. $$\frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{Q}{r}$$

B. $$\frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{Qt}}{r}$$

C. $$\frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{Q}{{{r^2}}}$$

D. $$\frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{Qt}}{{{r^2}}}$$

Answer: Option D


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$