Examveda

For the system described by \[\mathop {\rm{X}}\limits^ \cdot \] = AX match List-I with List-II and select the correct answer.
List-I (Matrix A) List-II (Position of eigen values)
a. \[\left[ {\begin{array}{*{20}{c}} { - 1}&2\\ 0&{ - 2} \end{array}} \right]\] 1. One eigen value at the origin
b. \[\left[ {\begin{array}{*{20}{c}} { - 1}&{ - 2}\\ { - 2}&{ - 4} \end{array}} \right]\] 2. Both the eigen value in the LHP
c. \[\left[ {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&0 \end{array}} \right]\] 3. Both the eigen values in RHP
d. \[\left[ {\begin{array}{*{20}{c}} 1&0\\ 2&4 \end{array}} \right]\] 4. Both the eigen values on the imaginary axis

A. a-2, b-1, c-3, d-4

B. a-2, b-1, c-4, d-3

C. a-1, b-2, c-4, d-3

D. a-1, b-2, c-3, d-4

Answer: Option B


Join The Discussion

Related Questions on Control Systems