For the system described by \[\mathop {\rm{X}}\limits^ \cdot \] = AX match List-I with List-II and select the correct answer.
| List-I (Matrix A) | List-II (Position of eigen values) |
| a. \[\left[ {\begin{array}{*{20}{c}} { - 1}&2\\ 0&{ - 2} \end{array}} \right]\] | 1. One eigen value at the origin |
| b. \[\left[ {\begin{array}{*{20}{c}} { - 1}&{ - 2}\\ { - 2}&{ - 4} \end{array}} \right]\] | 2. Both the eigen value in the LHP |
| c. \[\left[ {\begin{array}{*{20}{c}} 0&{ - 1}\\ 1&0 \end{array}} \right]\] | 3. Both the eigen values in RHP |
| d. \[\left[ {\begin{array}{*{20}{c}} 1&0\\ 2&4 \end{array}} \right]\] | 4. Both the eigen values on the imaginary axis |
A. a-2, b-1, c-3, d-4
B. a-2, b-1, c-4, d-3
C. a-1, b-2, c-4, d-3
D. a-1, b-2, c-3, d-4
Answer: Option B
Related Questions on Control Systems
In root locus analysis the breakaway and break in points
A. lie on the real axis
B. Either lie on the real axis or occur in complex conjugate pairs
C. Always occur in complex conjugate pairs
D. None of the above
Which of the following features is not associated with Nichols chart?
A. (0 dB, -180°) point on Nichols chart represent critical Point (-1, 0)
B. It is symmetric about -180°
C. M loci are centred about (0 dB, -180°) point
D. The frequency at intersection of G (j$$\omega $$) locus and M = +3 dB locus gives bandwidth of closed loop system

Join The Discussion