$$\frac{{{2^{n + 4}} - 2 \times {2^n}}}{{2 \times {2^{\left( {n + 3} \right)}}}} + {2^{ - 3}}$$ is equal to = ?
A. 2(n+1)
B. $$\left( {\frac{9}{8} - {2^n}} \right)$$
C. $$\left( { - {2^{n + 1}} + \frac{1}{8}} \right)$$
D. 1
Answer: Option D
A. 2(n+1)
B. $$\left( {\frac{9}{8} - {2^n}} \right)$$
C. $$\left( { - {2^{n + 1}} + \frac{1}{8}} \right)$$
D. 1
Answer: Option D
A. $$\frac{1}{2}$$
B. 1
C. 2
D. $$\frac{7}{2}$$
Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:
A. 1.45
B. 1.88
C. 2.9
D. 3.7
Join The Discussion