Given the recurrence relation for the Legendre polynomials (2n + 1) xPn(x) = (n + 1) Pn + 1(x) + Pn - 1(x), which of the following integrals has a non-zero value?
A. \[\int_{ - 1}^{ + 1} {{x^2}{P_n}\left( x \right){P_{n + 1}}\left( x \right)dx} \]
B. \[\int_{ - 1}^{ + 1} {x{P_n}\left( x \right){P_{n + 2}}\left( x \right)dx} \]
C. \[\int_{ - 1}^{ + 1} {x{{\left[ {{P_n}\left( x \right)} \right]}^2}dx} \]
D. \[\int_{ - 1}^{ + 1} {{x^2}{P_n}\left( x \right){P_{n + 2}}\left( x \right)dx} \]
Answer: Option A
Join The Discussion