How much does a watch lose per day, if its hands coincide every 64 minutes?
A. $$32\frac{8}{{11}}$$ min.
B. $$36\frac{5}{{11}}$$ min.
C. 90 min.
D. 96 min.
Answer: Option A
A. $$32\frac{8}{{11}}$$ min.
B. $$36\frac{5}{{11}}$$ min.
C. 90 min.
D. 96 min.
Answer: Option A
The reflex angle between the hands of a clock at 10.25 is:
A. 180º
B. $${\text{192}}{\frac{1}{2}^ \circ }$$
C. 195º
D. $${\text{197}}{\frac{1}{2}^ \circ }$$
A clock is started at noon. By 10 minutes past 5, the hour hand has turned through:
A. 145º
B. 150º
C. 155º
D. 160º
A. $$59\frac{7}{{12}}$$ min. past 3
B. 4 p.m.
C. $$58\frac{7}{{11}}$$ min. past 3
D. $$2\frac{3}{{11}}$$ min. past 4
It will gain time .
Clock is fast .
Because 64 is less than 65(5/11)
If the hands are coinciding earlier then shouldn't the watch gain instead of lose?
55 minutes spaces are covered in 60 minutes
Can't understand the line. Please, explain.