Identify the correct Bellmann Ford Algorithm.
A.
for i=1 to V[g]-1
do for each edge (u,v) in E[g]
do Relax(u,v,w)
for each edge (u,v) in E[g]
do if d[v]>d[u]+w(u,v)
then return False
return True
B.
for i=1 to V[g]-1
for each edge (u,v) in E[g]
do if d[v]>d[u]+w(u,v)
then return False
return True
C.
for i=1 to V[g]-1
do for each edge (u,v) in E[g]
do Relax(u,v,w)
for each edge (u,v) in E[g]
do if d[v]<d[u]+w(u,v)
then return true
return True
D.
for i=1 to V[g]-1
do for each edge (u,v) in E[g]
do Relax(u,v,w)
return True
Answer: Option A
Related Questions on Graph Algorithms (DFS, BFS, Dijkstras, etc)
A. Breadth-First Search (BFS)
B. Depth-First Search (DFS)
C. Bellman-Ford Algorithm
D. Dijkstra's Algorithm
What is the time complexity of Breadth-First Search (BFS) on a graph with V vertices and E edges?
A. O(V + E)
B. O(V2)
C. O(E log V)
D. O(V log V)
In Depth-First Search (DFS), what is the order of visiting nodes?
A. Level order
B. Inorder
C. Postorder
D. Preorder
Which algorithm can be used to detect negative weight cycles in a graph?
A. Dijkstra's Algorithm
B. Prim's Algorithm
C. Bellman-Ford Algorithm
D. Kruskal's Algorithm
Join The Discussion