Identify the Newton-Raphson iteration scheme for finding the square root of 2.
A. $${{\text{x}}_{{\text{n}} + 1}} = \frac{1}{2}\left( {{{\text{x}}_{\text{n}}} + \frac{2}{{{{\text{x}}_{\text{n}}}}}} \right)$$
B. $${{\text{x}}_{{\text{n}} + 1}} = \frac{1}{2}\left( {{{\text{x}}_{\text{n}}} - \frac{2}{{{{\text{x}}_{\text{n}}}}}} \right)$$
C. $${{\text{x}}_{{\text{n}} + 1}} = \frac{2}{{{{\text{x}}_{\text{n}}}}}$$
D. $${{\text{x}}_{{\text{n}} + 1}} = \sqrt {2 + {{\text{x}}_{\text{n}}}} $$
Answer: Option A
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion