If α and β are the roots of equation x2 + αx + β = 0 then find α3 + β3 = ?
A. -7
B. 8
C. -8
D. 7
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\text{ }}{x^2}{\text{ + }}\alpha x + \beta = 0 \cr & {\text{Sum of root}} \cr & \alpha + \beta = \frac{{ - \alpha }}{1}\,......(i) \cr & \alpha \beta = \beta \,......(ii) \cr & {\text{From (i) and (ii)}} \cr & {\text{Then, }}\alpha = 1 \cr & {\text{Then, }}\beta = - 2 \cr & {\text{Then value of }} \cr & \Leftrightarrow {\alpha ^3} + {\beta ^3} \cr & = 1 + {\left( { - 2} \right)^3} \cr & = - 7 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion