If $$\left( {0.4x + \frac{1}{x}} \right) = 5,$$ what is the value of $$\left( {0.064{x^3} + \frac{1}{{{x^3}}}} \right)?$$
A. 125
B. 110
C. 119
D. 105
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & \left( {0.4x + \frac{1}{x}} \right) = 5 \cr & {\text{cube both side}} \cr & {\left( {0.4x} \right)^3} + \frac{1}{{{x^3}}} + 3\left( {0.4x + \frac{1}{x}} \right) \times \left( {0.4x} \right)\left( {\frac{1}{x}} \right) = {\left( 5 \right)^3} \cr & 0.064{x^3} + \frac{1}{{{x^3}}} + 3\left( 5 \right)\left( {0.4} \right) = 125 \cr & 0.064{x^3} + \frac{1}{{{x^3}}} + 6 = 125 \cr & 0.064{x^3} + \frac{1}{{{x^3}}} = 119 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion