Solution (By Examveda Team)
$$\eqalign{
& {\text{According to the question,}} \cr
& {\text{If ,}}2s = a + b + c \cr
& \Leftrightarrow s = \frac{{a + b + c}}{2} \cr
& {\text{Let, }} \cr
& a = 10 \cr
& b = 10 \cr
& c = 10 \cr
& \because s = \frac{{a + b + c}}{2} \cr
& \Rightarrow s = \frac{{10 + 10 + 10}}{2} \cr
& \Rightarrow s = \frac{{30}}{2} \cr
& \Rightarrow s = 15 \cr
& \therefore s\left( {s - c} \right) + \left( {s - a} \right)\left( {s - b} \right) \cr
& = 15\left( {15 - 10} \right) + \left( {15 - 10} \right)\left( {15 - 10} \right) \cr
& = 75 + 25 \cr
& = 100 \cr
& {\text{Now check from option, }} \cr
& {\text{Option 'A' }}ab = 10 \times 10 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 100\left( {{\text{Satisfied}}} \right) \cr} $$
Join The Discussion