If $$2x + \frac{1}{{4x}} = 1{\text{,}}$$ then the value of $${x^2} + \frac{1}{{64{x^2}}}$$ is?
A. 0
B. 1
C. $$\frac{1}{4}$$
D. 2
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & 2x + \frac{1}{{4x}} = 1 \cr & {\text{Dividing by 2 both side}} \cr & \Rightarrow x + \frac{1}{{8x}} = \frac{1}{2} \cr & {\text{Squaring both side }} \cr & \Rightarrow {x^2} + \frac{1}{{64{x^2}}} + 2 \times x \times \frac{1}{{8x}} = \frac{1}{4} \cr & \Rightarrow {x^2} + \frac{1}{{64{x^2}}} + \frac{1}{4} = \frac{1}{4} \cr & \Rightarrow {x^2} + \frac{1}{{64{x^2}}} = \frac{1}{4} - \frac{1}{4} \cr & \Rightarrow {x^2} + \frac{1}{{64{x^2}}} = 0 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion