If $${\text{2}}x - \frac{1}{{2x}} = 5{\text{,}}$$ $${\text{x}} \ne {\text{0,}}$$ then find the value of $${x^2} + \frac{1}{{16{x^2}}} - 2$$ = ?
A. $$\frac{{19}}{4}$$
B. $$\frac{{23}}{4}$$
C. $$\frac{{27}}{4}$$
D. $$\frac{{31}}{4}$$
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & 2x - \frac{1}{{2x}} = 5 \cr & {\text{Divide by 2 both side}} \cr & x - \frac{1}{{4x}} = \frac{5}{2} \cr & {\text{Squaring both side}} \cr & \Rightarrow {x^2} + \frac{1}{{16{x^2}}} - 2 \times x \times \frac{1}{{4x}} = \frac{{25}}{4} \cr & \Rightarrow {x^2} + \frac{1}{{16{x^2}}} - \frac{1}{2} = \frac{{25}}{4} \cr & \Rightarrow {x^2} + \frac{1}{{16{x^2}}} = \frac{{25}}{4} + \frac{1}{2} \cr & \Rightarrow {x^2} + \frac{1}{{16{x^2}}} = \frac{{27}}{4} \cr & {\text{So, }} \cr & {x^2} + \frac{1}{{16{x^2}}} - 2 \cr & = \frac{{27}}{4} - 2 \cr & = \frac{{19}}{4} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion