If $$\frac{{3\left( {{x^2} + 1} \right) - 7x}}{{3x}} = 6,$$ x ≠ 0 the value $$\sqrt x + \frac{1}{{\sqrt x }}$$ is:
A. $$\sqrt {\frac{{35}}{3}} $$
B. $$\sqrt {\frac{{31}}{3}} $$
C. $$\sqrt {\frac{{11}}{3}} $$
D. $$\sqrt {\frac{{25}}{3}} $$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{
& \frac{{3\left( {{x^2} + 1} \right) - 7x}}{{3x}} = 6 \cr
& 3{x^2} + 3 - 7x = 18x \cr
& 3{x^2} + 3 = 25x \cr
& 3\left( {{x^2} + 1} \right) = 25x \cr
& {\text{divided by }}'x' \cr
& 3\left( {x + \frac{1}{x}} \right) = 25 \cr
& x + \frac{1}{x} = 25 \cr
& x + \frac{1}{x} + 2 = \frac{{25}}{3} \cr
& {\left( {x + \frac{1}{x}} \right)^2} = \frac{{25}}{3} + 2 \cr
& {\left( {\sqrt x + \frac{1}{{\sqrt x }}} \right)^2} = \frac{{31}}{3} \cr
& \sqrt x + \frac{1}{{\sqrt x }} = \sqrt {\frac{{31}}{3}} \cr} $$
Join The Discussion