If $$3\sqrt {\frac{{1 - a}}{a}} + 9 = 19 - 3\sqrt {\frac{a}{{1 - a}}} ,$$ then what is the value of a?
A. $$\frac{3}{{10}},\,\frac{7}{{10}}$$
B. $$\frac{1}{{10}},\,\frac{9}{{10}}$$
C. $$\frac{2}{5},\,\frac{3}{5}$$
D. $$\frac{1}{5},\,\frac{4}{5}$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{
& {\text{Put }}\sqrt {\frac{{1 - a}}{a}} = x \cr
& \Rightarrow 3x + 9 = 19 - \frac{3}{x} \cr
& \Rightarrow 3x + \frac{3}{x} = 10 \cr
& \Rightarrow x = 3,\,\frac{1}{3} \cr
& {\text{Now, }}\sqrt {\frac{{1 - a}}{a}} = 3 \cr
& \Rightarrow \frac{{1 - a}}{a} = 9 \cr
& \Rightarrow 10a = 1 \cr
& \Rightarrow a = \frac{1}{{10}} \cr
& {\text{and }}\sqrt {\frac{{1 - a}}{a}} = \frac{1}{3} \cr
& \Rightarrow \frac{{1 - a}}{a} = \frac{1}{9} \cr
& \Rightarrow 10a = 9 \cr
& \Rightarrow a = \frac{9}{{10}} \cr
& \therefore \,a = \frac{1}{{10}}\,{\text{and }}\frac{9}{{10}} \cr} $$
Join The Discussion