If 3x2 - 5x + 1 = 0, then the value of $$\left( {{x^2} + \frac{1}{{9{x^2}}}} \right)$$ is:
A. $$1\frac{2}{3}$$
B. $$1\frac{1}{3}$$
C. $$2\frac{1}{9}$$
D. $$2\frac{1}{3}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & 3x\left( {x - \frac{5}{3} + \frac{1}{{3x}}} \right) = 0 \cr & x + \frac{1}{{3x}} = \frac{5}{3} \cr & {x^2} + \frac{1}{{9{x^2}}} + \frac{2}{3} = \frac{{25}}{9} \cr & {x^2} + \frac{1}{{9{x^2}}} = \frac{{25 - 6}}{9} \cr & {x^2} + \frac{1}{{9{x^2}}} = \frac{{19}}{9} \cr & {x^2} + \frac{1}{{9{x^2}}} = 2\frac{1}{9} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion