If 3x2 - 9x + 3 = 0, then what is the value of $${\left( {x + \frac{1}{x}} \right)^3}?$$
A. 9
B. 729
C. 81
D. 27
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & 3{x^2} - 9x + 3 = 0 \cr & 3x\left( {x - 3 + \frac{1}{x}} \right) = 0,\,x + \frac{1}{x} = 3 \cr & \therefore \,{\left( {x + \frac{1}{x}} \right)^3} = {\left( 3 \right)^3} = 27 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion