If (4a - 3b) = 1, ab = $$\frac{1}{2}$$ where a > 0 and b > 0, what is the value of (64a3 + 27b3)?
A. 15
B. 25
C. 30
D. 35
Answer: Option D
Solution (By Examveda Team)
(4a - 3b) = 1, ab = $$\frac{1}{2}$$Squaring both side
(4a - 3b)2 = (1)2
16a2 + 9b2 - 2(4a)(3b) = 1
16a2 + 9b2 - 24ab = 1
16a2 + 9b2 - 24$$\left( {\frac{1}{2}} \right)$$ = 1
16a2 + 9b2 - 12 = 1
16a2 + 9b2 = 13
Adding 12 both side
16a2 + 9b2 + 12 = 13 + 12
(4a)2 +(3b)2 + 2(4a)(3b) = 25
(4a + 3b)2 = 25
4a + 3b = 5
Cubing both side
64a3 + 27b3 = 125 - 3(4a)(3b)(4a + 3b)
64a3 + 27b3 = 125 - 90
64a3 + 27b3 = 35
Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion