If [8(x + y)3 - 27(x - y)3] ÷ (5y - x) = Ax2 + Bxy + Cy2, then the value of (A + B + C) is:
A. 26
B. 19
C. 16
D. 13
Answer: Option C
Solution (By Examveda Team)
[8(x + y)3 - 27(x - y)3] ÷ (5y - x) = Ax2 + Bxy + Cy2Let, x = 1, y = 1
[8(1 + 1)3 - 27 × 0] ÷ (5 - 1) = (A + B + C)
$$\frac{{8 \times 8}}{4}$$ = A + B + C
16 = A + B + C
Join The Discussion