If a + b = 1 and a3 + b3 + 3ab = k, then the value of k is?
A. 1
B. 3
C. 5
D. 7
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & a + b = 1 \cr & {\text{By cubing,}} \cr & {a^3} + {b^3} + 3ab\left( {a + b} \right) = {1^3} \cr & \Rightarrow {a^3} + {b^3} + 3ab = 1\left[ {\because a + b = 1} \right] \cr & \Rightarrow {a^3} + {b^3} + 3ab = k \cr & {\text{From above both equations,}} \cr & k = 1 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion