If a continuous function f(x) does not have a root in the interval [a, b], then which one of the following statements is TRUE?
A. f(a) $$ \cdot $$ f(b) = 0
B. f(a) $$ \cdot $$ f(b) < 0
C. f(a) $$ \cdot $$ f(b) > 0
D. $$\frac{{{\text{f}}\left( {\text{a}} \right)}}{{{\text{f}}\left( {\text{b}} \right)}} \leqslant 0$$
Answer: Option C
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion