Solution (By Examveda Team)
$$\eqalign{
& a + \frac{1}{b} = 1{\text{, }}b + \frac{1}{c} = 1{\text{, }}c + \frac{1}{a} = ? \cr
& {\text{Put values, }} \cr
& a = \frac{1}{2},b = 2,{\text{ }}c = - 1 \cr
& c + \frac{1}{a} \cr
& = - 1 + \frac{1}{{\left( {\frac{1}{2}} \right)}} \cr
& = - 1 + 2 \cr
& = 1 \cr
& \cr
& {\bf{Alternate:}} \cr
& \Rightarrow a + \frac{1}{b} = 1 \cr
& \Rightarrow a = 1 - \frac{1}{b} = \boxed{\frac{{b - 1}}{b}} \cr
& \frac{1}{a} = \frac{b}{{b - 1}} \cr
& \Rightarrow b + \frac{1}{c} = 1 \cr
& \Rightarrow \frac{1}{c} = 1 - b,\boxed{c = \frac{1}{{1 - b}}} \cr
& \therefore c + \frac{1}{a} \cr
& = \frac{1}{{1 - b}} + \frac{b}{{b - 1}} \cr
& = \frac{1}{{1 - b}} - \frac{b}{{1 - b}} \cr
& = \frac{{1 - b}}{{1 - b}} \cr
& = 1 \cr} $$
Join The Discussion