If $$a + \frac{1}{a} = 3,$$ then the value of $${a^3} + \frac{1}{{{a^3}}}$$ is?
A. 27
B. 24
C. 19
D. 18
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & {\text{Given , }}a + \frac{1}{a} = 3 \cr & {\text{Cube both sides}} \cr & {a^3} + \frac{1}{{{a^3}}} + 3 \times a \times \frac{1}{a}\left( {a + \frac{1}{a}} \right) = {\left( 3 \right)^3} \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} + 3 \times 3 = 27 \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} = 27 - 9 \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} = 18 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion