If a function f(z) = u (x, y) + iv (x, y) of the complex variable z = x + iy, where x, y, u and v are real, is analytic in a domain D of z, then which of the following is true?
A. $$\frac{{\partial u}}{{\partial x}} = \frac{{\partial v}}{{\partial x}}$$
B. $$\frac{{\partial u}}{{\partial x}} = \frac{{\partial v}}{{\partial y}}{\text{ and }}\frac{{\partial u}}{{\partial y}} = - \frac{{\partial v}}{{\partial x}}$$
C. $$\frac{{\partial u}}{{\partial x}} = \frac{{\partial v}}{{\partial x}}{\text{ and }}\frac{{\partial u}}{{\partial y}} = \frac{{\partial v}}{{\partial y}}$$
D. $$\frac{{{\partial ^2}u}}{{\partial x\partial y}} = \frac{{{\partial ^2}v}}{{\partial x\partial y}}$$
Answer: Option B
A. $$\frac{{1 + i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 + i}}{{\sqrt 2 }}a$$
B. $$ia{\text{ and }} - ia$$
C. $$ia,\, - ia,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
D. $$\frac{{1 + i}}{{\sqrt 2 }}a,\, - \frac{{1 + i}}{{\sqrt 2 }}a,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
Which of the following functions of the complex variable z is not analytic everywhere?
A. ez
B. $$\sin \frac{{\text{z}}}{{\text{z}}}$$
C. e3
D. |z|3
A. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 + \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
B. \[\left( {1 + \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 - \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
C. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 + \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]
D. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 - \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]


Join The Discussion