Examveda

If a2 + a + 1 = 0, then the value of a9 is?

A. 2

B. 3

C. 1

D. 0

Answer: Option C

Solution (By Examveda Team)

$${a^2} + a + 1 = 0$$
\[\left[ \begin{array}{l} {a^3} + {1^3} = \left( {a + 1} \right)\left( {{a^2} + a + 1} \right)\\ {a^3} - {1^3} = \left( {a - 1} \right)\left( {{a^2} + a + 1} \right) \end{array} \right]\]
$$\eqalign{ & \therefore \left( {{a^3} - 1} \right) = \left( {a - 1} \right) \times 0 \cr & \Rightarrow {a^3} - 1 = 0 \cr & \Rightarrow {a^3} = 1 \cr & \Rightarrow {\left( {{a^3}} \right)^3} = {1^3} \cr & \Rightarrow {a^9} = 1 \cr} $$

This Question Belongs to Arithmetic Ability >> Algebra

Join The Discussion

Comments (3)

  1. Mutasim Sanin
    Mutasim Sanin:
    3 years ago

    If we use the value-(1) for ‘a’ in the question, the result stands
    1^2+1+1=0
    or
    3=0
    How is it possible?

  2. Sudhansu Patra
    Sudhansu Patra:
    5 years ago

    wrong formula
    a3+b3 = (a+b ) a2-ab+b2

  3. Manikandan Vaidyanathan
    Manikandan Vaidyanathan:
    5 years ago

    Actually ( a^3 + 1^3)=(a+1)(a^2+a+1)

Related Questions on Algebra