If $${a^3} + \frac{1}{{{a^3}}} = 2{\text{,}}$$ then the value of $$\frac{{{a^2} + 1}}{a}$$ is (a positive number) ?
A. 1
B. 2
C. 3
D. 4
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {\text{But }}a = 1 \cr & {a^3} + \frac{1}{{{a^3}}} = 2 \cr & \Rightarrow {1^3} + \frac{1}{{{1^3}}} = 2 \cr & \Rightarrow 2 = 2{\text{ }}\left( {{\text{Satisfy}}} \right) \cr & {\text{So, }}\frac{{{a^2} + 1}}{a} \cr & = \frac{{{1^2} + 1}}{1} \cr & = 2 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion