Solution (By Examveda Team)
$$\eqalign{
& {a^2} + {b^2} + {c^2} = 2\left( {a - b - c} \right) - 3 \cr
& \Rightarrow {a^2} + {b^2} + {c^2} = 2a - 2b - 2c - 3 \cr
& \Rightarrow {a^2} + {b^2} + {c^2} - 2a + 2b + 2c + 3 = 0 \cr
& \Rightarrow {a^2} - 2a + 1 + {b^2} + 2b + 1 + {c^2} + 2c + 1 = 0 \cr
& \Rightarrow {\left( {a - 1} \right)^2} + {\left( {b + 1} \right)^2} + {\left( {c + 1} \right)^2} = 0 \cr
& {\left( {a - 1} \right)^2} = 0{\text{ }}{\left( {b + 1} \right)^2} = 0{\text{ }}{\left( {c + 1} \right)^2} = 0 \cr
& \Rightarrow a - 1 = 0{\text{ }} \Rightarrow b + 1 = 0{\text{ }} \Rightarrow c + 1 = 0 \cr
& \Rightarrow a = 1{\text{ }} \Rightarrow b = - 1{\text{ }} \Rightarrow c = - 1 \cr
& \therefore a + b + c \cr
& = 1 - 1 - 1 \cr
& = - 1 \cr} $$
Join The Discussion