If an amount 'R' is paid at the end of every year for 'n' years, then the net present value of the annuity at an interest rate of 'i' is
A. $${\text{R}}\left[ {\frac{{{{\left( {1 + {\text{i}}} \right)}^{\text{n}}} - 1}}{{\text{i}}}} \right]$$
B. $${\text{R}}\left[ {\frac{{{{\left( {1 + {\text{i}}} \right)}^{\text{n}}} - 1}}{{{\text{i}}{{\left( {1 + {\text{i}}} \right)}^{\text{n}}}}}} \right]$$
C. $${\text{R}}{\left( {1 + {\text{i}}} \right)^{\text{n}}}$$
D. $$\frac{{\text{R}}}{{{{\left( {1 + {\text{i}}} \right)}^{\text{n}}}}}$$
Answer: Option B
Join The Discussion