If a(x + y) = b(x - y) = 2ab, then the value of 2(x2 + y2) is?
A. 2(a2 - b2)
B. 2(a2 + b2)
C. 4(a2 - b2)
D. 4(a2 + b2)
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & a\left( {x + y} \right) = b\left( {x - y} \right) = 2ab \cr & x + y = 2b \cr & {\text{On squraing both side}} \cr & \Rightarrow {x^2} + {y^2} + 2xy = 4{b^2}\,.....(i) \cr & \Rightarrow b\left( {x - y} \right) = 2ab \cr & \Rightarrow x - y = 2a \cr & {\text{On squraing both side}} \cr & \Rightarrow {x^2} + {y^2} - 2xy = 4{a^2}\,.....(ii) \cr & {\text{Add equation (i) and (ii)}} \cr & \Rightarrow 2\left( {{x^2} + {y^2}} \right) = 4\left( {{a^2} + {b^2}} \right) \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion