If C is a closed curve enclosing a surface S, then the magnetic field intensity $$\overrightarrow H $$, the current density $$\overrightarrow J $$ and the electric flux density $$\overrightarrow D $$ are related by
A. $$\iint\limits_S {\overrightarrow H .\overrightarrow d s = }\oint\limits_C {\left( {J + \frac{{\partial \overrightarrow D }}{{\partial t}}} \right)} .\overrightarrow d l$$
B. $$\int\limits_C {\overrightarrow H .\overrightarrow d \ell = \mathop{{\int\!\!\!\!\!\int}\mkern-21mu \bigcirc}\limits_S {\left( {\overrightarrow J + \frac{{\partial \overrightarrow D }}{{\partial t}}} \right)} } .\overrightarrow d s$$
C. $$\mathop{{\int\!\!\!\!\!\int}\mkern-21mu \bigcirc}\limits_S {\overrightarrow H .\overrightarrow d } s = \int\limits_C {\left( {\overrightarrow J + \frac{{\partial \overrightarrow D }}{{\partial t}}} \right)} .\overrightarrow d l$$
D. $$\oint\limits_C {\overrightarrow H .\overrightarrow d l} = \iint\limits_S {\left( {\overrightarrow J + \frac{{\partial \overrightarrow D }}{{\partial t}}} \right)}.\overrightarrow d s$$
Answer: Option D
Join The Discussion