If $$\frac{a}{b} + \frac{b}{a} = 1{\text{,}}$$ then the value of a3 + b3 will be?
A. 1
B. 0
C. -1
D. 2
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {a^2} + {b^2} = ab\,........(i) \cr & {a^2} + {b^2} - ab = 0 \cr & \because {a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\,.....(ii) \cr & {\text{From equation (i) and (ii)}} \cr & \Rightarrow {a^3} + {b^3} = \left( {a + b} \right)\left( 0 \right) \cr & \Rightarrow {a^3} + {b^3} = 0 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion