Solution (By Examveda Team)
$$\eqalign{
& \frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1 \cr
& \frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0{\text{ }} \cr
& \Rightarrow \frac{p}{a} = x,{\text{ }}\frac{q}{b} = y,{\text{ }}\frac{r}{c} = z \cr
& \Rightarrow \left( {x + y + z} \right) = 1 \cr
& {\text{Squaring the both sides}} \cr
& \Rightarrow {x^2} + {y^2} + {z^2} + 2\left( {xy + yz + zx} \right) = 1 \cr
& {\text{and }}\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \cr
& \Rightarrow \frac{{xy + yz + zx}}{{xyz}} = 0 \cr
& \Rightarrow xy + yz + zx = 0 \cr
& \therefore {x^2} + {y^2} + {z^2} = 1 \cr
& {\text{So, }}\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}} = 1 \cr} $$
Join The Discussion