If $$\frac{1}{a}\left( {{a^2} + 1} \right) = 3{\text{,}}$$ then the value of $$\frac{{{a^6} + 1}}{{{a^3}}}$$ = ?
A. 9
B. 18
C. 27
D. 1
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & \frac{1}{a}\left( {{a^2} + 1} \right) = 3 \cr & \Rightarrow a + \frac{1}{a} = 3 \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} + 3.a.\frac{1}{a}\left( {a + \frac{1}{a}} \right) = {3^3} \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} + 3\left( 3 \right) = {3^3} \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} = 27 - 9 \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} = 18 \cr & \Rightarrow \frac{{{a^6} + 1}}{{{a^3}}} = 18 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion