If $$\frac{{2 + a}}{a}$$ + $$\frac{{2 + b}}{b}$$ + $$\frac{{2 + c}}{c}$$ = 4, then the value of $$\frac{{ab + bc + ca}}{{abc}}$$ is?
A. 2
B. 1
C. 0
D. $$\frac{1}{2}$$
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & \frac{{2 + a}}{a} + \frac{{2 + b}}{b} + \frac{{2 + c}}{c} = 4 \cr & \Rightarrow \frac{{2bc + abc + 2ac + abc + 2ab + abc}}{{abc}} = 4 \cr & \Rightarrow \frac{{2\left( {bc + ab + ca} \right)}}{{abc}} + \frac{{3abc}}{{abc}} = 4 \cr & \Rightarrow \frac{{2\left( {bc + ab + ca} \right)}}{{abc}} + 3 = 4 \cr & \Rightarrow \boxed{\frac{{ab + bc + ca}}{{abc}} = \frac{1}{2}} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion