If $$\frac{{{a^2} + {b^2}}}{{{c^2}}}$$ = $$\frac{{{b^2} + {c^2}}}{{{a^2}}}$$ = $$\frac{{{c^2} + {a^2}}}{{{b^2}}}$$ = $$\frac{1}{k}{\text{,}}$$ $$\left( {k \ne 0} \right)$$ then k = ?
A. 2
B. 1
C. 0
D. $$\frac{1}{2}$$
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & \frac{{{a^2} + {b^2}}}{{{c^2}}} = \frac{{{b^2} + {c^2}}}{{{a^2}}} = \frac{{{c^2} + {a^2}}}{{{b^2}}} = \frac{1}{k} \cr & {\text{Put }}a = b = c = 1 \cr & \Rightarrow \frac{{1 + 1}}{1} + \frac{{1 + 1}}{1} + \frac{{1 + 1}}{1} = \frac{1}{k} \cr & \Rightarrow 2 = 2 = 2 = \frac{1}{k} \cr & \Rightarrow k = \frac{1}{2} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion