If $$\frac{{{a^2} + {b^2}}}{{{c^2}}}$$ = $$\frac{{{b^2} + {c^2}}}{{{a^2}}}$$ = $$\frac{{{c^2} + {a^2}}}{{{b^2}}}$$ = $$\frac{1}{k}{\text{,}}$$ $$\left( {k \ne 0} \right)$$ then k = ?
A. 2
B. 1
C. 0
D. $$\frac{1}{2}$$
Answer: Option D
A. 2
B. 1
C. 0
D. $$\frac{1}{2}$$
Answer: Option D
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$
Join The Discussion