If $$\frac{a}{{q - r}}$$ = $$\frac{b}{{r - p}}$$ = $$\frac{c}{{p - q}}{\text{,}}$$ find the value of pa + qb + rc is?
A. 0
B. 21
C. 2
D. -6
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\text{Let }}\frac{a}{{q - r}} = \frac{b}{{r - p}} = \frac{c}{{p - q}} = k \cr & \frac{a}{{q - r}} = k{\text{ }}\left( {{\text{On multiplying by }}p} \right) \cr & pa = k\left( {pq - pr} \right)\,......(i) \cr & {\text{In the same way we can write}} \cr & {\text{qb = k}}\left( {qr - qp} \right)\,........(ii) \cr & {\text{And }}rc = k\left( {rp - rp} \right)\,.....iii) \cr & {\text{On adding equation (i), (ii) and (iii) }} \cr & pa + qb + rc \cr & = k\left( {pq - pr + qr - qp + rp - rq} \right) \cr & = 0 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion